*

X

Estudio científico concluye que el universo no debería existir

Ciencia

Por: pijamasurf - 11/01/2017

El estudio más preciso, hasta la fecha, de las propiedades de la antimateria, concluye que el universo es científicamente inexplicable. Debió de haberse destruido en su misma gestación

La presencia de la antimateria en el universo genera una serie de complicaciones teóricas para los físicos. Uno de los grandes misterios de la física moderna es por qué la antimateria no destruyó el universo al principio del tiempo. La antimateria y la materia -al ser idénticas, pero de una carga distinta- se destruyen entre sí cuando entran en contacto, produciendo una explosión que es considerada la reacción más eficiente observada en el universo -y la inspiración de mucha tecnología en la ciencia ficción. Sin embargo, para explicar la evolución del universo los físicos han teorizado que debe de haber una diferencia entre la materia y la antimateria, más allá de la carga eléctrica. 

Pero aunque esta diferencia debe de estar en alguna parte, los físicos no la han podido encontrar. Algunos creían que la diferencia podía estar en el magnetismo de las partículas de antimateria, de un antiprotón, pero una reciente estudio, el más preciso de la historia, notó que el momento magnético de la antimateria es exactamente igual al de la materia.

Christian Smorra, del laboratorio europeo CERN, apunta a la perplejidad de la ciencia ante esto: "Todas nuestras observaciones muestran una completa simetría entre la materia y la antimateria, por lo cual el universo no debería existir. Una asimetría podría existir en alguna parte, pero simplemente no entendemos dónde está la diferencia". El modelo estándar predice que el Big Bang debió de haber generado igual cantidad de antimateria que materia, con la importante particularidad de una diferencia fundamental en la antimateria, que habría permitido que la materia predominara después de los instantes iniciales del universo. 

Anteriormente los científicos han medido la masa, la carga eléctrica y han comparado, entre otras cosas, un átomo de antihidrógeno con uno de hidrógeno. La siguiente prueba en este intento de encontrar una diferencia -y salvar la razón de la existencia del universo- será realizada en el CERN, donde se medirá la gravedad de la antimateria y si ésta "cae hacia arriba". Los científicos seguirán esforzándose hasta finalmente encontrar una explicación satisfactoria. Y si no lo logran, quizás habría que empezar a considerar la posibilidad de que en realidad no existimos.

Alquimia cósmica: colisión de estrellas de neutrones nos enseñó cómo se crea el oro en el universo

Ciencia

Por: pijamasurf - 11/01/2017

Las estrellas son, por supuesto, las primeras alquimistas; así se crea el oro a partir de la colisión de dos estrella de neutrones

Una reciente colisión de estrellas de neutrones arrojó luz, literalmente, a la creación de oro y otros metales raros en el universo, mostrando por primera vez la alquimia cósmica que genera estos elementos. 

Los científicos saben que en el origen del universo se creó hidrógeno y cuando las estrellas se forman, fusionan hidrógeno con elementos más pesados como el carbón y el hidrógeno. Cuando las estrellas mueren se crean elementos más pesados, metales comunes como el hierro y el aluminio, los cuales son diseminados en explosiones de supernovas. Hasta hace poco se creía que estas explosiones estelares debían de producir metales más raros como el oro. Sin embargo, ignoraban un paso más. La muerte de una estrella masiva deja una estrella de neutrones. Estas estrellas son de menor tamaño, con un diámetro que suele oscilar entre los 20km. En parte, sus dimensiones se deben a que las estrellas de neutrones son el núcleo colapsado de una estrella mayor, lo cual a su vez, aunque pequeñas, las hace también las más densas de entre las conocidas, con una masa que puede llegar a ser el doble de la de nuestro sol. Por otro lado, se les llama "de neutrones" porque esa es casi la única partícula subatómica que las compone, luego del efecto combinado de la explosión de supernova de una estrella masiva que les da origen y el colapso gravitatorio sobre su núcleo.

Recientemente científicos del Observatorio de Interferometría Láser de Ondas Gravitatorias observaron por primera vez a detalle una colisión de dos estrellas de neutrones, uno de los fenómenos más violentos que pueden ocurrir en el universo y que, por la energía implicada en el choque, culmina con el colapso de ambas estrellas en un agujero negro. Las dos estrellas que chocaron estaban localizadas a 130 millones de años luz de la Tierra, con una masa ligeramente superior a la del Sol y, al momento en que inició la observación, con poco más de 300km de distancia entre sí. Los astrónomos recibieron la alerta sobre el suceso porque ambas estrellas empezaron a girar a tal velocidad que el espacio-tiempo comenzó a alterarse. Al principio, los astros giraban 20 veces por segundo alrededor uno del otro; 100 segundos después, los giros eran de 2 mil veces por segundo, acercándose cada vez más, en una especie de danza fatal e inesperadamente hermosa en su destrucción inminente. Un par de segundos después, el telescopio espacial Fermi de la NASA registró una ráfaga intensa de rayos gamma y restos de materia cósmica. 

En la luz mortecina de la colisión los científicos pudieron resolver el enigma de cómo se forma el oro. En el espectro luminoso yacen las huellas de los elementos -cada elemento tiene una particular huella de líneas dentro del espectro, que refleja una diferente estructura atómica. El espectro de la explosión, lo que se llama una kilonova, contiene huellas de los elementos más pesados del universo; la luz marca la firma del material estelar en decadencia convirtiéndose en platino, oro y otros elementos. Estos elementos necesitan de una enorme cantidad de energía para añadir neutrones a un núcleo atómico, y la explosión observada creó oro igual a unas diez Tierras en cantidad. De esta misma forma fue creado el oro o el platino que puedes estar usando en estos momentos, en el fuego atómico de la colisión de una estrella de neutrones en nuestra galaxia hace miles de millones de años.

El oro de la explosión observada el 17 de agosto tendrá probablemente un destino similar. Se mezclará con polvo y gas en su galaxia natal y posiblemente algún día formará parte de un nuevo planeta donde quizás evolucione la vida.