*

X

Dmitry Itskov, el multimillonario que ha comprado la inmortalidad

Ciencia

Por: pijamasurf - 07/24/2012

Cuando Dmitry Itskov decidió invertir en algo, no pensó en petroleo, ni en oro, ni en minas de algún preciado mineral, lo hizo en la vida eterna. Su solvencia económica le permitió auspiciar Avatar, un proyecto científico de gran nivel.

En un obsesivo afán por controlar su entorno, el hombre a recurrido a su mejor aliado: el dinero. Para Dmitry Itskov, un empresario ruso, prolongar la existencia (y por lo tanto la agonía) se volvió una prioridad para él y, posiblemente, para otros multimillonarios también lo será.

Se trata de Avatar, un proyecto que concentra a 30 prestigiados científicos con el objetivo de que trasplanten un cerebro humano a un robot.

Según Itskov, esto se logrará en 10 años. En una carta dirigida a otros multimillonarios, el empresario comentó lo siguiente: “Usted tiene la capacidad para financiar la extensión de su vida hasta la inmortalidad. La civilización ha llegado a materializar tecnologías impensables. No es una fantasía ni ciencia ficción”.

El proyecto abrirá su oficina en San Francisco este verano, y tendrá como objetivo que los científicos más brillantes del globo se reúnan con un mismo fin: la inmortalidad humana.

“El siguiente esfuerzo para la ciencia será crear un nuevo cuerpo humano”, dijo Dmitry en la Conferencia Global Future 2045.  

“Será una perfecta interfaz mente-cuerpo que permita controlar todos los movimientos, además, los científicos desarrollarán un sistema que permita vivir al cerebro fuera del cuerpo”, sentenció el millonario ruso.

[Disinfo

¿Cómo se cuentan los universos paralelos?

Ciencia

Por: AV - 07/24/2012

Existe la teoría de que vivimos en un Universo dentro de otros universos, que a su vez viven dentro de otros, como si fueran burbujas dentro de burbujas. ¿Cómo podemos saber cuántos son? Un concepto matemático que fue estudiado hace siglos, ahora parece tener una aplicación en el mundo real.

Existe la teoría de que vivimos en un universo que se encuentra dentro de otros universos, que a su vez viven dentro de otros, como si fueran burbujas dentro de burbujas. Ahora bien, no se puede decir simplemente que se trata de un número infinito de universos, porque para sustentar esta teoría es necesario realizar predicciones y calcular probabilidades.

El director del Instituto de Física Teórica de Stanford, Leonard Susskind, propone que no hay que contar todos los universos, sino solo aquellos que pueden afectarnos. Junto con otros tres físicos de Stanford, Daniel Harlow, Steve Shenker, y Douglas Stanford, retomó el concepto de los números p-ádicos. Fueron propuestos en 1897 por Kurt Hensel y desde entonces han sido estudiados; ahora puede ser que sean la explicación de cómo funcionan los universos paralelos, la dirección del tiempo y la materia oscura.

Utilicemos los números binarios, donde 0 es el interior de una burbuja y 1 todo lo que se encuentra en su exterior. Así, habrá una burbuja que contiene otra burbuja que contiene a otra, es decir 000. El árbol familiar de todos los universos puede representarse de la siguiente manera:

El proceso sigue hasta el infinito. Así, la línea roja representa el continuo de universos. Irónicamente, aunque es un infinito de bits, no se trata de un número como π, lleno de decimales que nunca encuentran un periodo de repetición. Los números p-ádicos son increíblemente fáciles de sumar, restar, multiplicar y dividir. Además, si se quiere calcular la distancia entre dos burbujas, el resultado será finito.

Ahora comienza a sonar lógico por qué algunos teóricos piensan que el mundo natural no tiene distancias infinitamente pequeñas.

Ahora bien, ¿cómo se explica la energía oscura? ¿Cómo se explican todas las irregularidades del cosmos? (Porque no parece probable que los Universos sean uniformes como el diagrama y que en ellos no persita el Caos. ¿O sí?). Susskind y sus colegas comenzaron a jugar con el árbol, cortaron algunas de sus ramas (los universos infértiles) y ahora estudian cómo esto afecta a los números p-ádicos. Así como en los árboles reales, esto ayuda a su crecimiento, además, el equipo afirma que con ello se puede explicar por qué el tiempo es unidireccional.

Para conocer más de la familia unos números que son zurdos (el dígito más importante es el de la derecha y las operaciones aritméticas siguen una lógica maravillosamente diferente), sugerimos consultar el enlace que ofrecemos al final. Es impresionante cómo un concepto matemático que fue estudiado por su propia belleza, ahora parece que tiene una aplicación en el mundo real. 

Con información de io9